A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

author

  • Somayeh Nemati Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
Abstract:

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature formula to reduce the fractional optimal control problem to solving a system of nonlinear algebraic equations that greatly simplifies the problem. Finally, some examples are included to confirm the efficiency and accuracy of the proposed method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a spectral method based on the second kind chebyshev polynomials for solving a class of fractional optimal control problems

in this paper, we consider the second-kind chebyshev polynomials (skcps) for the numerical solution of the fractional optimal control problems (focps). firstly, an introduction of the fractional calculus and properties of the shifted skcps are given and then operational matrix of fractional integration is introduced. next, these properties are used together with the legendre-gauss quadrature fo...

full text

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

full text

A New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems

In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...

full text

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

full text

Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet

The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...

full text

A Novel Successive Approximation Method for Solving a Class of Optimal Control Problems

This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 04  issue 1

pages  15- 27

publication date 2016-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023